Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Kai-Bin Yang, Li-Rong Lin and Rong-Bin Huang*

Department of Chemistry, Xiamen University, Xiamen 361005, People's Republic of China

Correspondence e-mail: rbhuang@xmu.edu.cn

Key indicators

Single-crystal X-ray study T = 173 KMean $\sigma(\text{C-C}) = 0.003 \text{ Å}$ R factor = 0.056 wR factor = 0.141Data-to-parameter ratio = 17.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4-[2-(Diphenylphosphino)phenyliminomethyl]-N,N-dimethylaniline, a new Schiff base containing triphenylphosphine

The title compound, $C_{27}H_{25}N_2P$, is a Schiff base containing triphenylphosphine. The molecule has a *trans* configuration about the C=N double bond [1.277 (2) Å]. The crystal packing is stabilized by van der Waals forces.

Received 10 May 2006 Accepted 19 May 2006

Comment

Schiff base ligands have various applications in the fields of synthesis and catalysis, and exhibit biological activity (Cozzi et al., 2003; Qiao et al., 2004; Maciejewska et al., 1999; Jalil et al., 2001; Li et al., 2005). Some Schiff bases containing oxygen, sulfur and complexes of transition metal ions have been synthesized (Rivera et al., 2006; Sah et al., 2006; Sharif et al., 2006) but few Schiff bases containing phosphorus have been reported. A Schiff base containing triphenylphosphine may be expected to be a useful bidentate ligand with new properties, because triphenylphosphine is a well known ligand for coordination compounds. Here we present the title compound, (I), a new Schiff base derivative containing triphenlphosphine.

In (I) (Fig. 1), all bond lengths and angles show normal values. The molecule has a *trans* configuration about the C9—N2 double bond. The crystal packing is stabilized by van der Waals forces.

Experimental

2-(Diphenylphosphino)benzenamine was prepared according to the literature method of Papathanasiou *et al.* (1997). The Schiff base was synthesized by refluxing an ethanol solution (20 ml) of 4-(dimethylamino)benzaldehyde (10 mmol) and 2-(diphenylphosphino)benzenamine (10 mmol) for 2 h. The solution was then cooled to room temperature. Light-yellow crystals were obtained, filtered and washed with cold ethanol. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of an acetonitrile solution.

© 2006 International Union of Crystallography All rights reserved

Crystal data

 $\begin{array}{lll} {\rm C_{27}H_{25}N_{2}P} & Z=4 \\ M_r=408.46 & D_x=1.249~{\rm Mg~m^{-3}} \\ {\rm Monoclinic,}~P2_1/c & {\rm Mo}~K\alpha~{\rm radiation} \\ a=17.579~(4)~{\rm Å} & \mu=0.14~{\rm mm^{-1}} \\ b=14.419~(3)~{\rm Å} & T=173~(2)~{\rm K} \\ c=8.732~(2)~{\rm Å} & {\rm Block,~yellow} \\ \beta=100.985~(4)^{\circ} & 0.50\times0.43\times0.21~{\rm mm} \\ V=2172.7~(8)~{\rm Å}^{3} \end{array}$

Data collection

Bruker SMART APEX 2000 CCD diffractometer 4719 independent reflections 4719 independent reflections 4719 reflections with $I > 2\sigma(I)$ Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.932, T_{max} = 0.971$ $\theta_{max} = 27.0^{\circ}$

Refinement

 $\begin{array}{lll} \mbox{Refinement on } F^2 & w = 1/[\sigma^2(F_{\rm o}^2) + (0.0695P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.056 & + 0.8283P] \\ wR(F^2) = 0.141 & where <math>P = (F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ S = 1.11 & (\Delta/\sigma)_{\rm max} < 0.001 \\ 4719 \ \mbox{reflections} & \Delta\rho_{\rm max} = 0.57 \ \mbox{e Å}^{-3} \\ 271 \ \mbox{parameters} & \Delta\rho_{\rm min} = -0.42 \ \mbox{e Å}^{-3} \end{array}$

All H atoms were positioned geometrically, with C—H distances of 0.95–0.98 Å, and refined using a riding model, with $U_{\rm iso}({\rm H})$ = 1.2 or 1.5 $U_{\rm eq}({\rm C})$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

References

Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

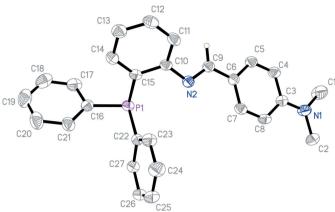


Figure 1

View of (I), with displacement ellipsoids drawn at the 50% probability level. For clarity, H atoms except for the methine H atom have been omitted.

Cozzi, P. G., Dolci, L. S., Garelli, A., Montalti, M., Prodi, L. & Zaccheroni, N. (2003). New J. Chem. 27, 692–697.

Jalil, M. A., Fujinami, S. & Nishikawa, H. (2001). J. Chem. Soc. Dalton Trans. pp. 1091–1098.

Johnson, C. K. (1976). ORTEPH. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Li, L.-Z., Zhao, C., Xu, T., Ji, H.-W., Yu, Y.-H., Guo, G.-Q. & Chao, H. (2005).
J. Inorg. Biochem. 99, 1076–1082.

Maciejewska, D., Pawlak, D. & Koleva, V. (1999). J. Phys. Org. Chem. 12, 875–880

Papathanasiou, P., Salem, G., Waring, P. & Willis, A. C. (1997). J. Chem. Soc. Dalton Trans. pp. 3435–3443.

Qiao, J., Wang, L.-D., Duan, L., Li, Y., Zhang, D.-Q. & Qiu, Y. (2004). Inorg. Chem. 43, 5096–5102.

Rivera, J. M., Reyes, H., Cortes, A. & Santillan, R. (2006). Chem. Mater. 18, 1174–1183.

Sah, A. K., Tanase, T. & Mikuriya, M. (2006). *Inorg. Chem.* 45, 2083–2092.
Sharif, S., Denisov, G. S., Toney, M. D. & Limbach, H. (2006). *J. Am. Chem. Soc.* 128, 3375–3387.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.